INFLUENCE OF NON NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR (EFAVIRENZ) ON THE PHARMACODYNAMIC ACTIVITY OF SITAGLIPTIN IN ANIMAL MODELS

T. Lakshmi *, V. Balakrishna¹, P. Sagar²
* Assoc Professor, Department of pharmacology, GNITC-School of Pharmacy, Ibrahimpatnam, Hyderabad.
¹,²Asst. Professor, Department of pharmacology, GNITC-School of Pharmacy, Ibrahimpatnam, Hyderabad.

ARTICLE INFO

Article History:
Received on 30th April, 2017
Peer Reviewed on 21st May 2017
Revised on 06th June, 2017
Published on 23rd June, 2017

Keywords:
Sitagliptin, Efavirenz, Insulin, Pharmacodynamics

ABSTRACT

Background: The availability of potent combination of antiretroviral regimens has resulted in a dramatic reduction in HIV-1 associated morbidity and mortality in the developed world. However, HIV infection and treatment has been associated with the development of insulin resistance, glucose intolerance and diabetes.

Aim: The aim of the present study was to evaluate the effect of efavirenz (antiHIV drug) on pharmacodynamic activity of sitagliptin (antidiabetic drug) in normal and diabetic rats with respect to insulin levels.

Materials and Methods: Alloxan-induced diabetic model in rats has been used in this study. In normal rats and diabetic rats the levels of insulin were calculated at 3 hr and 8 hr.

Results and Conclusion: The insulin levels were found to be similar in the groups of sitagliptin control and after single dose and multiple dose treatment of Efavirenz in normal rats. The insulin levels of diabetic rats did not reduce significantly in single and multiple dose treatment of Efavirenz when compared to sitagliptin control. The results confirm the absence of pharmacodynamic interaction of sitagliptin with acute and chronic administration of Efavirenz.
1. INTRODUCTION:
Polypharmacy is very common practice for the patients suffering with chronic diseases such as diabetes mellitus and HIV infection, and thus leads to the undesirable potent Drug-drug interactions (pharmacodynamic and/or pharmacokinetic) which can alter the safety and efficacy profile of a drug in many ways. Recent reports (1, 2) reveals that drug interactions played a vital role in reported adverse events and that majority of the drugs withdrawn for safety reasons from the US market were related with significant drug-drug interactions. The importance of this fact is further emphasized by increased post marketing adverse event reports by 240% over the last decade (3). Diabetes mellitus is a metabolic disorder that needs treatment for prolonged periods and maintenance of normal blood glucose level is very important in this condition, since both hyperglycemia as well as hypoglycemia is unwanted phenomenon (4, 5). Since many studies suggested that PI therapy (6, 7) is linked to the development of diabetic complications, it is of importance to propose therapeutic strategies with fewer side effects. Frequently prescribed antiretroviral drugs belong to the class of non nucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-infected patients. Efavirenz is commonly used NNRTIs for the treatment of HIV- infection. Non Nucleoside reverse transcriptase inhibitors are to be improving the metabolic complications in HIV-infected patients (8, 9). In this contest, there are more chances of co administration of non nucleoside reverse transcriptase inhibitors with oral hypoglycemic drugs in patients with concurrent type 2 diabetes mellitus and HIV infection which may leads to potent drug-drug interactions. Based on this background, formerly we have conducted a preliminary study to investigate the effect of Efavirenz on the pharmacodynamic activity of sitagliptin in rats (normal and diabetic) with respect to blood glucose levels only. However, determination of insulin along with blood glucose levels would be a more precious and dependent approach to conclude a clear pharmacodynamic interaction scenario in the view of clinical and scientific stand-point.

2. MATERIALS AND METHODS
2.1 Drugs and Chemicals: Sitagliptin and Efavirenz were obtained as gift samples from Mylan Pharmaceuticals, Hyderabad and Aurobindo pharma Ltd. Hyderabad. Alloxan monohydrate was purchased from LOBA Chemie (Mumbai, India). Insulin kit (human insulin as standard; Insik-5, Sorin Biomedica, Saluggia, Italy).

2.2 Animals
Study was conducted on healthy Albino Wistar rats of either sex, weight range 200-250 g. The animals were procured from Mahaveer enterprises, Hyderabad. All rats were kept for acclimatization for seven days prior to start the study. Animals were subjected to a constant daily cycle of 12 hours of light and 12 hours of darkness (06:00-18:00), constant temperature (21 ± 3 °C) and relative humidity of 55 ± 15 %. Rats had access to commercial pelleted non-sterilised chow and normal tap water ad libitum, except during fasting access to food was restricted. Diabetes was induced in rats by the administration of alloxan monohydrate in two doses, i.e. 100 mg and 50 mg/kg bd. wt. intraperitoneally for two consecutive days (10). After 72 h, samples were collected from rats by orbital puncture of all surviving rats, and the serum was analyzed for glucose levels. Rats with blood glucose levels of 200 mg/dl and above were considered as diabetic and selected for the study. All the experiments were carried out as per the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Environment and Forest, Government of India and the experimental protocol has been approved by the IAEC.

2.3 Drug administration
Route of administration: Per oral
Vehicle: Antiretroviral drugs were suspended in sodium CMC for oral administration. Sitagliptin solution was prepared by dissolving it in 5% gum acacia. All drugs were administered to respective groups by oral gavage method.

2.4 Experimental protocol
The rats were fasted for 18 hr prior to experiment with water ad libitum. Eight groups were employed in the study and each group comprised of six rats. The study is planned and designed in following way. 
Group – I: Rats treated with Sitagliptin (10 mg/kg/po)
Group- II: Rats treated with Efavirenz (54 mg/kg/po)
Group-III: Rats treated with Efavirenz (54 mg/kg/po) and Sitagliptin (10 mg/kg/po)
Group-IV: Rats treated with Efavirenz (54 mg/kg/po) for 7 days and on 8th day they received Sitagliptin (10 mg/kg/po)

Group –V: Diabetic rats treated with Sitagliptin (10 mg/kg/po)

Group- VI: Diabetic rats treated with Efavirenz (54 mg/kg/po)

Group- VII: Diabetic rats treated with Efavirenz (54 mg/kg/po) and Sitagliptin (10 mg/kg/po)

Group-VIII: Diabetic rats treated with Efavirenz (54 mg/kg/po) for 7 days and on 8th day they received Sitagliptin (10 mg/kg/po).

Blood samples were withdrawn from retro orbital plexus (12) of each rat was collected at time intervals of 3.0 and 8 hours. The collected plasma was used to determine insulin levels by Radioimmunoassay method (13) using a commercially available kit (Biomedica, Saluggia, Italy) as per the instructions provided by the manufacturers.

2.5 Data and statistical analysis

Data were expressed as mean ± SEM. The significance was determined by applying Student’s paired ‘t’ test.

3. RESULTS AND DISCUSSION

Effect of Efavirenz on Sitagliptin with respect to Insulin levels

In normal and diabetic rats the levels of insulin were calculated at 3 hr and 8 hr. The insulin levels were found to be similar in the groups of Sitagliptin control and after single dose and multiple doses of Efavirenz (Table 1 and Figure 1). Efavirenz alone had no significant effect on insulin levels in normal and diabetic rats.

Table 1. Insulin levels (µ u/ml) with Sitagliptin in presence and absence Efavirenz in normal and diabetic rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Normal Rats</th>
<th>Diabetic rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hr</td>
<td>8 hr</td>
</tr>
<tr>
<td>Sitagliptin</td>
<td>9.92 ±0.70</td>
<td>9.74 ±0.90</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>8.44 ±0.43</td>
<td>8.12 ±0.45</td>
</tr>
<tr>
<td>Efavirenz + Sitagliptin(SDT)</td>
<td>9.45 ±0.27</td>
<td>9.31 ±0.30</td>
</tr>
<tr>
<td>Efavirenz + Sitagliptin (MDT)</td>
<td>9.36 ±0.28</td>
<td>9.20 ±0.27</td>
</tr>
</tbody>
</table>

SDT, single dose treatment; MDT, Multiple-dose treatment.

Figure 1

Insulin levels (mean ± SD) with Sitagliptin in presence and absence of Efavirenz in rats

- Sitagliptin
- Efavirenz
- Efavirenz + Sitagliptin (SDT)
HIV infected patients are likely to suffer with diabetes mellitus and hence most often antiretroviral drugs are coadministered with oral antidiabetic drugs. HIV infection and diabetes are both chronic diseases that significantly affect lifestyle. When they intersect, the treatment regimens required for both diseases can be overwhelming for patients. Frequently prescribed antiretroviral drugs belong to the class of non nucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-infected patients. Efavirenz is commonly used NNRTIs for the treatment of HIV- infection. Non Nucleoside reverse transcriptase inhibitors are to be improving the metabolic complications in HIV-infected patients (8, 9). Sitagliptin has shown to inhibit DPP-4 in patients with type 2 diabetes and significantly reduce HbA1C and fasting blood glucose in patients with type 2 diabetes (14).

However, there is no much evidence on the activity of Efavirenz alone in diabetic condition, as well as its effect on the activity of Sitagliptin. Based on these factors the study was planned to investigate the effect of Efavirenz on insulin levels and its effect on the activity of Sitagliptin in normal and diabetic rats to evaluate the pharmacodynamic interaction with respect to insulin levels. In this study, the multiple dose effect of Efavirenz on the Sitagliptin activity was also studied for the influence of the long term treatment with Efavirenz since both drugs are used for chronic period. The normal rat model served to quickly identify the interaction and diabetic rat model served to validate the same response in the actually used condition of the drug. In diabetic rats, Sitagliptin produced significant antihyperglycemic activit, depict the same as reported in the literature. Upon acute and chronic administration of Efavirenz did not interfere with antihyperglycemic activity of Sitagliptin in diabetic rats.

Our study revealed the safety profile of Efavirenz with respect to insulin levels. It confirms the absence of pharmacodynamic interaction between Efavirenz and Sitagliptin.

CONCLUSION
This study can be further studied in another dissimilar species to confirm that the combination of Efavirenz and Sitagliptin was proved to be safe for clinical benefit.

ACKNOWLEDGEMENTS
The authors are thankful to M/s. Aurobindo Pharma Ltd, Hyderabad and M/s. Mylan pharmaceuticals, Hyderabad for supplying gift samples.

REFERENCES

How to cite this article:

Source of Support: Nil

Conflict of Interest: None declared.